We go over common ways to customize your Dagster Helm deployment. This includes adding Kubernetes and Celery configuration at the pipeline and solid level, configuring Celery queues, and configuring your Helm release to use external resources.
We expect familiarity with the basic guide and advanced guide on deploying Dagster with Helm.
The dagster-k8s/config
allows users to pass custom configuration to the Kubernetes Job, Job metadata, JobSpec,
PodSpec, and PodTemplateSpec metadata. We can specify this information in a solid or pipeline's tags.
@solid(
tags = {
'dagster-k8s/config': {
'container_config': {
'resources': {
'requests': { 'cpu': '250m', 'memory': '64Mi' },
'limits': { 'cpu': '500m', 'memory': '2560Mi' },
}
},
'pod_template_spec_metadata': {
'annotations': { "cluster-autoscaler.kubernetes.io/safe-to-evict": "true"}
},
'pod_spec_config': {
'affinity': {
'nodeAffinity': {
'requiredDuringSchedulingIgnoredDuringExecution': {
'nodeSelectorTerms': [{
'matchExpressions': [{
'key': 'beta.kubernetes.io/os', 'operator': 'In', 'values': ['windows', 'linux'],
}]
}]
}
}
}
},
},
},
)
def my_solid(context):
context.log.info('running')
@pipeline(
tags = {
'dagster-k8s/config': {
'container_config': {
'resources': {
'requests': { 'cpu': '200m', 'memory': '32Mi' },
}
},
}
}
)
def my_pipeline():
my_solid()
Users can configure multiple Celery queues (for example, one queue for each resource to be limited)
and multiple Celery workers per queue via the runLauncher.config.celeryK8sRunLauncher.workerQueues
section of values.yaml
.
To use the queues, dagster-celery/queue
can be set on solid tags.
By default, all solids will be sent to the default Celery queue named dagster
.
@solid(
tags = {
'dagster-celery/queue': 'snowflake_queue',
}
)
def my_solid(context):
context.log.info('running')
Users can set dagster-celery/run_priority
on the pipeline tags to configure the baseline priority of all solids
from that pipeline. To set priority at the solid level, users can set dagster-celery/priority
on the solid tags to configure additional priority.
When priorities are set on both the pipeline and solid, the sum of both priorities will be used.
@solid(
tags = {
'dagster-celery/priority': 2,
}
)
def my_solid(context):
context.log.info('running')
@pipeline(
tags = {
'dagster-celery/run_priority': 3,
}
)
def my_pipeline():
my_solid()
In a real deployment, users will likely want to set up an external PostgreSQL database and
configure the postgresql
section of values.yaml
.
postgresql:
enabled: false
postgresqlHost: "postgresqlHost"
postgresqlUsername: "postgresqlUsername"
postgresqlPassword: "postgresqlPassword"
postgresqlDatabase: "postgresqlDatabase"
service:
port: 5432
In a real deployment, users will likely want to set up an external message broker like Redis, and
configure rabbitmq
and redis
sections of values.yaml
.
rabbitmq:
enabled: false
redis:
enabled: true
internal: false
host: "redisHost"
port: 6379
brokerDbNumber: 0
backendDbNumber: 0
Users will likely want to permission a ServiceAccount bound to a properly scoped Role to launch Jobs and create other Kubernetes resources.
Users will likely want to use Secrets for managing secure information such as database logins.
You should now be familiar with the common ways to customize your Dagster Helm deployment.